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Study of Diamond Film Growth and Properties
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By

Dr. Sacharia Albin

SUMMARY

Diamond has many unique properties which are technologically important. Included in

these properties are its wide bandgap, high refractive index, high thermal conductivity,

hardness and resistivity. In thin film form, diamond will be useful in several applications

of laser optics. The objective of the research program was to study diamond film growth

and its properties in order to enhance the laser damage threshold of substrate materials.

1. Laser Induced Thermal Stress Parameter. RT

Calculations were performed to evaluate laser induced thermal stress parameter, RT of

diamond. R T can be used as a figure of merit for evaluating laser materials; higher the

value of RT, higher the laser induced damage threshold (LIDT) of a material. It is found

that diamond has several orders of magnitude higher value for R T compared to other

materials. The presence of isolated impurities in diamond film does not reduce its LIDT

significantly.

2. Diamond Film Growth

diamond films were grown using a microwave plasma enhanced chemical vapor

deposition (MPECVD) system at various conditions of gas composition, pressure,

temperature and substrate materials. A 0.5% CH4 in H 2 at 20 torr was ideal to grow high

quality diamond films on substrates maintained at 900 oc. The density of nucleation was

an important factor controlling the growth rate and it was enhanced by abrading the surface

of the substrates.

3. Diamond Film Characterization

The diamond films were polycrystalline which were characterized by scanning electron

microscopy (SEM) and Raman scattering spectroscopy. The absorption of free-standing
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films were also measured. The top surface of the growing film is always rough due to the

facets of polycrystalline film while the back surface of the film replicates the substrate

surface. The Raman spectra showed the presence of sp 3 (diamond) and sp 2 (graphite)

bonded carbon in the films. The graphitic content increases the optical absorption of the

film.

An analytical model based on two dimensional periodic heat flow was developed to

calculate the effective in-plane (face parallel) diffusivity of a two layer system. The

effective diffusivity of diamond/silicon samples was measured using a laser pulse technique

which does not require special sample preparation. The model was applied to deduce the

diffusivity of polycrystalline diamond films using the spatial dependence of phase and

amplitude. Excellent agreement has been obtained for the thermal diffusivity values

measured using the two methods. The thermal conductivity of the films were measured to

be 13.5 W/treK, which is better than that of a type Ia natural diamond.

4. LIDT Measurement

Laser induced damage experiments were performed on bare Si substrates, diamond film

coated Si, and diamond film windows and a differential reflectometer system was

developed to obtain a quantitative measure of LIDT. A high power pulsed Nd:YAG laser

system at 1064 and 532 nm was used to induce damage on the samples. Significant

improvements in the LIDT were obtained for diamond film coated Si compared to the bare

Si substrates. In the case of diamond film windows, the value of LIDT was found to be

around 620 MW/cm 2. The measured values of LIDT was considerably lower than the

theoretical value. Stress due to the lattice mismatch between the diamond film and the

substrate, graphitic, content and surface roughness are contributing factors for the

reduction of LIDT.

ii
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1. INTRODUCTION

Diamond has many unique properties distinguishing it from other solid state materials.

Included in these properties are its wide bandgap, high refractive index, high thermal

conductivity, hardness and resistivity. Many important properties of diamond are shown in

Table 1 and compared with those of other group IV elemental semiconductors and gallium

arsenide.

Table 1

Comparison of important properties of diamond with other semiconductors

Properties G-e Si GaAs Diamond

r

g.

r

w

Band Gap (eV) 0.66 1.12 1.43 5.45

Breakdown Field (V/cm) -i05 5x106 6x106 >107

Carrier Lifetime (s) 2x10 "4 2.5x10 "3 10 -8 ~10 "10

Dielectric Constant 16 11.8 13.1 5.5

Electron Mobility (cm2/V-s) 3900 1500 8500 1900

Electron Velocity (era/s) 6x106 lx107 2x107 2.7x107

Hardness (Kg/mm 2) 780 103 600 104

Hole Mobility (cm2N-s) 1900 600 400 1600

Lattice Constant (A) 5.64 5.43 5.65 3.57

Melting Point (oc") 941 1420 1238 -3800

Refractive Index 5.6 3.4 3.6 2.4

Resistivity (Ohm-era) 43 2.5x105 4x108 >1016

Thermal Conductivity(W/cm-IO 0.64 1.45 0.46 20

Thermal Expansion Coefficient 5.5x10-6 2.6x10-6 5.9x10-6 8x10-7
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It is obvious from Table 1, diamond is superior to other semiconductors in almost all

properties listed above. These physical properties of diamond can be effectively exploited

to develop electronic and optical devices which operate at high temperature and speed. 1-3

The wide bandgap and stable color centers in diamond have been used to make tunable

solid state lasers. 4 With the progress achieved in gas phase deposition of diamond films,

new applications of diamond films in laser optics are possible. High reflection and

antireflection coatings currently used on optical elements in laser systems to optimize

performance are often the weak links which limit the energy flux from a laser.

Improvements in the laser damage threshold, El2, of these films will significantly reduce

design requirements as well as increase the transmitted laser power limits. A measure of

the laser damage tolerance of a material called the thermal stress parameter, RT, has been

used as a figure of merit for evaluating materials. 5
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OXIDF__

I I I I

0 1 2 3 4

LOG(THERMAL CONDUCTIVITY)

Figure 1. A comparison of thermal stress parameters of diamond and other laser materials.
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This parameter is given by the relation

Rr= ofk(1-v)/ctE (I)

where of isthetensilefracturestrengthofthematerial,k isitsthermalconductivity,v isits

Poisson'sratio,ct isitsthermalexpansion coefficientand E, itselasticmodulus. High

thermalstressparametersrepresentmaterialswith highlaserdamage thresholds.

We have calculatedR T fordiamond and severalothercommon opticalmaterialsand display

theresultsinFigurei. The thermalconductivityand thermalstressresistanceof similar

materialsclustertogetheringroups. The oxidegroup includessapphire,spineland

commonly used garnets(YAG, GSGG). The halidegroup includesfluoridesand chlorides

of magnesium, calcium and lithiumand theglassgroup includesphosphateand silicate

glasses.Diamond, havingahigherthermalconductivityand ordersof magnitude higher

thermal stress parameter, appears to be a good choice as a laser damage tolerant material.

Hence diamond films may be used for a variety of optical coatings as well as optical

windows.

2. LASER INDUCED DAMAGE

2.1 Dielectric Breakdown

If the damage is due to dielectric breakdown induced by the laser radiation, the laser

power density, Pd, is related to the dielectric breakdown field, V b, by the equation,

Pd = Vb2 n:_ (2)

where n is the refractive index and Zo is the impedance of free space. For bulk diamond,

Equation (2) gives Pd " 600 GW/cm 2. For 10.6 _m laser radiation a threshold of

4 GW/cm 2 has been measured for bulk diamond. 6 In the case of thin films of high

bandgap materials, the Forlani-Minnaja law 7 predicts V b ct d -1/2 where d is the film

thickness. Therefore, diamond thin films should have a high breakdown field and a high

laser damage thresholdl

2.2 Damage due to Impurities

Thin films often contain impurities and inclusions which absorb the laser radiation; then

the damage is caused by the thermal stress induced by laser heating. The temperature rise

3
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of the host due to a spherical impurity absorbing radiation as shown in Fig. 2 is given

by8, 9

d "• a 2

lk 1 . r 2/ 2ab e vl {siny-ycosy_sin{ry/a)}dy

P=kPl IV) "--rn yZ (csin y-y cos y_+ b2yZsinZy

[ 0

T

(3)

kp and k h are the thermal conductivity of the impurity and host respectively, a is the radius

of the impurity, Q is the absorption cross section, I is the laser intensity, tp is the laser

pulse duration and b = [(kp2Dh)/(kh2Dp)] 1/2 ,

c = 1-(kh/kp) and _'1 = a2/Dp , where Dp and D h are the thermal diffusivity of the impurity

and the host. The above equation can be solved for the laser energy required for the

melting points of the impurity or the host.

Damage Laser

Host

Temperature

r
a

¥

Figure 2. Schematic diagram of laser absorption and temperature rise in a host containing

an isolated impurity.

4
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Figure 3. Variation of damage threshold with thermal conductivity of hosts

containing impurities.

In Fig. 3 we show the variation of threshold energy density with k h, required for

breakdown at a = r, when various isolated impurities are present in the host. It is clear

that the damage threshold of diamond is not severely affected by the impurities. Also for

r >>a, the calculated value of Ed for diamond film was found to be a constant,

independent of the thermal conductivity of the impurities.

In spite of the excellent properties discussed above, electronic and optical applications

of diamond were limited due to the lack of large scale synthesis techniques. Bulk

diamonds produced by high pressure-high temperature process are used as heat sinks and

abrasives. However, this situation changed when Deryagin and Fedoseev 10,11 showed

theoretically and experimentally that diamond could be synthesized in the metastable region

at low temperature and low pressure using chemical vapor deposition process. The key to

5
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the process is the control of super saturation of carbon on the substrate surface to enhance

diamond growth and suppress graphite growth. This work has been verified by both

Japanese and American researchers. Several modifications to this technique has been

developed to grow diamond films on various substrates at varying conditions. These

modified techniques include hot filament, acetelyne flame, and plasma enhanced chemical

vapor deposition (PECVD) 12"16. Among all the different techniques, PECVD process is a

suitable method for producing uniform thin films on large area substrates.

3. DIAMOND FILM GROWTH AND CHARACTERIZATION

3.1 Microwave PECVD System

Coupler _ Microwave

dLoad I Wave_uide SourceI I
Cavity

Capacitance
Manometer

Quartz Plate

Throttle

Valve

Vacuum
Pump

m

m
l

Mass Flow
Controllers

as2

Plasma

" Substrate

" Heated Pedestal

_Bellows

Motor Drive

Fig. 4. Microwave plasma enhanced chemical vapor deposition system for diamond films.
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The deposition system was assembled as shown schematically in Fig. 4. The microwave

power can be varied from 300 to 1500 W. It is guided by the rectangular waveguide and

fed to an axisymmetric coupler to produce a spherical plasma shape. The low pressure

plasma chamber is separated from the waveguide at atmospheric pressure, using a quartz

window. The chamber is evacuated using a turbo pumping system capable of a low

vacuum to 10 -5 tort. An automatic pressure control unit maintains the working pressure at

a fixed value up to 20 torr. The substrate is placed on a graphite stage which is heated by

an RF induction heater and a temperature control assembly from room temperature to 1100

oc. Two separate mass flow controllers are used to maintain H 2 and CH 4 flow in to the

deposition system. The system is tested for microwave power leakage below the safe

level. The system is also fitted with interlocks for water flow, over temperature and gas

leaks. Trial experiments were conducted for the proper operation of the system and

conditions were established to grow diamond films on silicon substrates.

3.2 Substrate Preparation

It was found that the surface texture plays an important role in the nucleation of diamond

film. Preferential nucleation occurs on scratch marks on the substrate. To increase the

nucleation density, the substrates were abraded with 0.1 _m diamond paste. Si wafers

were used as substrates for most of the growth studies. Tungsten carbide substrates were

also used to study the differences in nucleation. In each case the substrate was cleaned in

acid and base solutions and rinsed in ethanol and blow-dried.

3.3 Diamond Film Growth

Experiments were conducted to grow diamond film on the samples. The substrate

temperature was varied fi'om 900 to 1100 oc; the methane content in hydrogen was varied

from 0.1 to 1.0 % in the gas mixture and the gas pressure from 1 to 20 torr. These process

parameters were varied systematically and the samples were analyzed using an SEM and

Raman spectroscopy. The most significant parameter for the growth of diamond film with

7



"t...... well defined facets was found to be the percentage of methane content in hydrogen. Under

all the operating conditions, films could be grown on all the substrates the films were stable

on Si and carbide substrates.

3.4 Diamond Growth using 0.5 % CFI 4

Fig. 5(a) shows the SEM photograph of a diamond film grown on a Si substrate for a 16

hours growth time. The growth rate is approximately l_m per hour for deposition carried

out using 1000 W of microwave power at 20 torr. The substrate was maintained at 900°C.

The film is continuous and polycrystalline. This is due to a high density of nucleation on

the Si substrate.

m.

= .

r

-,,at-
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Fig. 5(a). Diamond film on Si substrate for 16 hours.

Under the same growth conditions the film grown on a carbide substrate is shown in Fig.

5(b). The film is not fully continuous yet; instead, well defined facets of the diamond

crystallites are visible. More importantly, the crystallites are of fairly uniform size which

8
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indicates that all of them were nucleated simultaneously and very few new nucleation

centers were produced on the substrate surface during the subsequent growth time. On

further growth, the crystallites would coalesce to form a continuous film.

L
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Fig. 5(b). SEM photograph of diamond crystallites on a carbide substrate.

Secondary growth on the crystallites are clearly visible while there is no evidence for

new nucleation on the carbide substrate surface. Hence it is reasonable to assume that the

film growth is mainly due to diamond growth on diamond crystallites to form a continuous

film. Therefore it is important to have high density of nucleation to begin with on the

substrate. For a 12 lam film to be continuous, the minimum nucleation density must be of

the order 10 6 cm -2. As seen in Fig. 5(a), it is easy to achieve this high nucleation density

on a Si substrate. We estimate the nucleation density in Fig. 5(b) is around 10 5 cm "2. To

achieve a thinner, continuous film on a carbide substrate, a higher nucleation density is

required. For other optical applications, the film thickness will be about a 1pm and

therefore, the nucleation density must be higher than 10 8 cm "2.

9



3.5 Diamond Film Growth using 1% CH 4

Under identical conditions given above, for the methane concentration of 1%, a

continuous film is obtained at 22 hours of deposition. Fig. 6(a) and (b) show the SEM

photographs of these samples on Si and WC substrate respectively.

_....-

-",_. i_
OF POOR QUAL/,Fy

Fig. 6. Diamond film grown at 1% methane concentration.

(a) on Si and (b) on tungsten carbide.

10



Thefilmscontainbothdiamondandgraphite.The film topographyis smooth.The

physicalpropertiesof thesefilms will be inferior to thoseof thesamplesshownin Fig.5,

dueto thepresenceof graphite.All thediamondfilm samplesgrownwerepolycrystalline.

Thefrontsurfacewasalwaysfacetedwhereasthebacksurfacewhichwasincontactwith

thesubstratc(etched-back)wassmootherthanthefront asshownin theSEM photograph

(Fig. 7). Thebacksurfaceof thefilm replicatesthesubstratesurface,whichmightbe

usefulto producesmoothdiamondsurfacesfor opticalapplication.

ORiGif'IAL PAGE IS

OF POOR QUAL_"rY

?

i

Fig. 7. Back surface of two diamond film samples, after removing the Si substrate.
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3.6 Diamond Film Characterization

3.7 Raman Spectroscopy

Raman spectroscopy is one of the characterization techniques commonly used for

diamond film to assess the nature of the chemical bonding state of carbon. The Raman

spectra of the sample films grown using 0.5 and 1% methane concentration are shown in

Fig. 8(a) & (b).

=

CTS/SEC X_E2

e_

4.000

3. 200

2.400

t.500

0,B00

• . . I I l=

600.0 800.0 t000.0 _;_00..0 t400.0 t600.0

Raman Shift (¢m-l)

Fig. 8(a). Raman spectrum of the diamond film grown using 0.5% methane.
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Fig. 8. Raman spectra of(b) a diamond film grown using 1% methane (c) a natural bulk

diamond
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All the diamond films showed characteristic first order Raman spectral line around 1332

cm-1, which may be compared with the spectrum shown in Fig. 8(c) for a natural bulk

diamond. The significant difference between the spectra is a broad fluorescence

background centered around 1550 cm -1 for the diamond films, which is an indication of

the presence of sp2 bonding due to graphitic carbon in diamond film. Since the sensitivity

of Raman scattering for sp 2 bonded carbon is almost two orders of magnitude higher

compared to that of sp 3 bonded carbon, we conclude that the films were predominantly

diamond. The line at 520 cm -1 is due to the silicon substrate. The sp2 content in the f'flm

grown using 0.5% methane concentration is considerably lower than that of the 1% case as

can be seen by comparing the sp 2 signals in Fig. 8 (a) & (b).

3.8 Absorbance Spectrem of Diamond Film

1.S-
ltlttll|l|lllltltli

.
'_ O.li

0.3

J
0.0 t ....... , ....

0.5 1..0

Wav*]..aS'Ch (1_ •}

v

3,.5

Fig. 9. Absorbance spectrum of a diamond film sample.
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The absorbance spectrum of diamond films was measured using a Perkin Elmer

spectrophotometer and is displayed in Fig.9, for the wavelength range from 500 to 1500

nm. Interference effects due to the film (1.87 lxm) can be clearly seen. No correction for

Fresnel reflectance from the film has been made in the absorbance spectrum shown.

Absorption of the film increases towards shorter wavelengths. The absorption coefficients

at 532 and 1064 nm, derived from Fig. 9 by applying the corrections for reflectance are

tx532 = 3.93 x 103 cm -1 and ctlt _ -- 1.20 x 103 em -1. These high values are due to the

graphitic content and defects in the diamond film and are higher than the absorption

coefficients of other optical thin film materials by three orders of magnitude.

3.9 Thermal Diffuslvity of Diamond Films

Thermal diffusivity of diamond film is critical for its performance in many applications.

Diamond films have a high value of thermal shock resistance parameter due to the large

value of thermal conductivity. This leads to a high threshold for laser induced damage.

Likewise, the damage threshold of diamond films is not affected by the presence of isolated

impurities because of its high thermal diffusivity. Theoretical studies on the effect of an

intermediate layer of diamond film between a metal film and a substrate have shown that a

diamond film of about l_tm will be sufficient to reduce the temperature of the metal film

induced by x-ray pulses of nanosecond duration 17. Also, it has been shown that diamond

is able to withstand the high thermal loads due to the internal photon flux in a free electron

laser cavityl8. In addition to being a good thermal conductor, diamond can also be used to

make electronic devices operating at high temperature. In many of these applications

diamond thin films are used. Defining the limits of the applicability of diamond films

requires a measurement of their thermal diffusivity. The high thermal diffusivity and thin

film geometry make standard thermal analysis inadequate for experimental determination.

For example, an experimental method based on radiation heat transfer and radiation

thermometry has been reported to measure the thermal conductivity of diamond films19.

Here, the substrate was removed by etching and the unsupported film was too fragile to

mount on a heated holder. The sample was coated with a black paint whose emissivity was

15
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assumed to be unity. A laser pulse technique was developed to measure the effective in-

plane (face parallel) diffusivity of diamond film deposited on a substrate. The substrate

need not be removed. The phase and amplitude variation of the in-plane thermal wave was

measured which is independent of the emissivity of the black paint.

3.10 Analysis

An analytical model describing in-plane heat flow in a two layered system was

developed to reduce the measured thermal diffusivity of the sample to a thermal diffusivity

for the diamond film. Two dimensional heat fl0w in each of the homogeneous isotropic

layers shown in Fig.10, is described by,

2 i #Tn(x'y't) - 0
V Tn(x,y,t )--- _t

_n (5)

where Tn(x,y,t ) and a n are the temperature and thermal diffusivity of the respective solids.

A !

y d2 _ ct2, K 2 substrate [

dx u 1, K 1 film
X

Fig. 10. A two layer system of the analytical model for in-plane heat flow.

Assuming no exterior surface heat flow of the two layer system (i.e. convection and

radiation losses are negligible), a solution for a thermal wave excited by a periodic source

and propagating in the x direction is

•itx,y,tl- A ej(k_ - I:_)co_y -k2 + tj_*pl
u I

(6),

16



for thefirst layerand

T2(x,y,t) = B e j(k x - t °_)Cos[(dl + d2- y)(-k 2

(7),

for the second layer,where dI and d2 are the layerthicknesses,k is

constantand _ istheangularfrequencyof theexcitation.

+ (J'c°).)I/2]e2

the propagation

At the interface of the two layers the temperature and flow are continuous which can be

expressed as

t

Tl(x,dl,t) = T2(x,d2,t )

and

0Tl(X,y,t) 0T2(x,y,t)
K I. = K 2

Oy 0y

(8),

(9)

i

for y = d1, where K 1 and K2 are the thermal conductivities of the two layers.

Equations (6), (7), (8) and (5) can be expressed in a matrix form as

K1

w

where s 1 and s 2 are defined as

at]

17

(1o)

(11),



and

s2

1/2

(12).

v

Nontrivial solutions for A and B exist when the determinant of the matrix in equation (10)

is zero, which can be expressed as the transcendental equation,

(_k 2 u11'1/2 (
_e 0

au/

(13).

For small s 1 and s 2, dl(tO/Ctl)l/2 and d2(_/u2)l/2 are much less than 1. This

assumption is especially valid in the case of diamond and silicon for low frequency thermal

excitation. The solution for k can be written as

- _ ¢l l¢l_Kldl+ K_2) f

By comparison with heat propagation

written in the form

k = ± (' °11/2

Cte ] (15),

where a e is an effective in-plane diffusivity, given by the expression

u I u 2 (K1 dl + K 2 d2)

u2 K1 dl + el K2 d2 (16)

(14).

ina singlelayer,the propagationconstantcan be

The thermal conductivity of the sample is related to its thermal diffusivity by the expression

k = co a (17)

._,._"
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where c is the specific heat and p is the density. Using the values of specific heat and

density of layer 1, the thermal properties of the second layer, the thickness of the layers

and the measured effective diffusivity of the double layer system, the diffusivity of layer 1

can be found from

ClPl ct2aedl- ct2K2d2+ aeK2d2

Ctlm

el Pla2dl
(18).

m

3.11 Thermal Diffusivity Measurement

To measure the thermal diffusivity of the sample, a portion of the samples was heated

and the time dependence of the surface temperature was measured. A block diagram of the

experimental setup used for these measurements is shown in Fig. 11.

Nd:YAG Laser Bragg Cell Mirror

I IR CameraiSynthesizer

i _[[ "]Mixer Focusing
Mirror

RF Generator

I tm
To Computer Controlled
Image Processor

Fig. 11. A block diagram of the experimental setup for diffusivity measurement.

The periodic heat source was the output of a 20 watt, 1.064 _tm Nd:YAG laser. The

output was focused to a spot less than 1 mm in diameter on the sample. The output of the

laser was modulated at a select frequency, by exciting a Bragg cell, which was within the

laser cavity. The power output of the laser was adjusted to fix the sample temperature

within 25 to 35 °C. To measure the spatial temperature distribution of the sample, an 8-12

pan infrared camera with a spatial resolution of better than 1 nun was used. The camera

was positioned with its axis perpendicular to the sample.
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Fig. 12. A typical temperature profile obtained at four arbitrary times.

Temperature measurements were performed in a mode where the camera scanned a single

horizontal line that passed through the center of the sample and the heating zone. The

camera output of the temperature images was in a standard video format (RS330). An

image processor was used to digitize 128 successive images. Each image was compressed

to a single temperature profile across the sample resulting in sampling of temperature over

1/30 of a second. The resulting temperature profiles as a function of time were then stored

for off-line processing. For the work presented here, data were collected using symmetric,

periodic heating at 2.812, 3.281 and 3.750 Hz. Typical temperature profiles obtained at

four different times are shown in Fig. 12. For a cyclic heating source, the diffusivity of the

sample can be calculated fi'om the spatial phase and amplitude dependence sufficiently far

from the source.
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Fig. 13. The phase of the thermal wave as a function of position.

To obtain the phase and amplitude of the signal at each point on the sample, a complex

fourier transform at each point was performed. The phase was determined from the

arctangent of the imaginary part of the fourier transform divided by the real part. The

calculated phase as a function of position is shown in Fig. 13. As can be seen in this figure

a portion of the phase away from the point of excitation, is linearly dependent on position.

The effective diffusivity a e can be calculated from the slope of the phase in this region

using the equation,

xf
ae---

2
S (19),

where s is the slope of the phase and f is the excitation frequency. Using the same

measurement technique, the diffusivity of a bare silicon substrate was found to be

1.04 + .02 cm2/sec, which is in reasonable agreement with results from other method of
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measurements20. Using equation (19) and the measured slopes, the effective diffusivity

was calculated for each sample at each frequency, which is shown in Table 2 for two

samples.

Table 2

Results of phase measurement

Frequency Slope of phase

(Hz) (cm-l)

16 tam film 32 tam film

2.812 2.45 2.08

3.281 2.56 2.41

3.750 2.80 2.59

Effective diffusivity

(era 2 see-I)

16 tam film 32 tam film

1.47 2.04

1.57 1.77

1.50 1.76

From these measurements and equation (18), the diffusivity of the diamond film is found to

be 8.10e .32 cm2/sec for the 16 tam thick film and 7.57±.7 cm2/sec for the 32 tam thick

film. Using equation (17), thermal conductivity is found to be 14.68 and 13.70 W/treK

respectively. These values are better than that of type Ia natural diamond. It has been

shown 19 that the value of thermal conductivity of diamond films depends strongly on the

presence of graphitic carbon in the films. A small amount of sp 2 bonded carbon was

detected in our films as seen from the Raman spectrum shown in Fig. 8(a). However, its

effect on thermal diffaxsivity can not be judged from the present experimental results.

The values of effective diffusivity of the composite diamond and silicon can also be

determined using the amplitude method. A least square fit of the spatial dependence of the

measured amplitude with the amplitude of the modified Bessel function 21,

AKo{(j ¢o/Cte)I/2r } (20)

was carriedout,where risthedistancefrom thecenterof thelaserheatingand A isa

normalizationfactor.Table3 shows theeffectivediffusivitydeterminedby thismethod at

threedifferentfrequenciesused forthemeasurement. The averageeffectivedif:fusivity

valuesare 1.47+ .03and 1.83+ .10yieldingthermaldiffusivityvaluesof 7.46+ .90and

7.33+ .70cm21 seerespectivelyforthetwo samples and thecalculatedthermal

22



conductivity values are 13.50 and 13.28 W/cmK. These are better than that of type la

natural diamond.

Table 3

Results of amplitude measurements

Frequency (Hz) Effective diffusivity (cm 2 see "l)

16 p.m film 32 _m film

2.812 1.44 1.90

3.281 1.49 1.71

3.750 1.50 1.91

w

Table 4

Summary of the Results

Method
Effective diffusivity
of composite
(sq.cra/see)

Diffusivity of Thermal conductivity Diamond film
diamond film of diamond film thickness

(sq.cm/sec) (W/cmK) (_tm)

Phase
1.51 8.10 14.68 16

1.86 7.57 13.70 32

Amplitude
1.47 7.46 13.50 16

1.83 7.33 13.28 32

From the summary of results shown in Table 4, it can be seen that excellent agreement has

been obtained for the thermal diffusivity values measured using the two methods.
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4. LASER INDUCED DAMAGE THRESHOLD MEASUREMENT

Silicon wafers were used as substrates. Free-standing diamond film windows were

produced by etching holes in the substrate. Three different types of samples as shown in

Fig.14, were used for the LIDT measurement.

Si Substrata

Diamond Film on Si

Z

L

b===

z_

m
m

Diamond Window

Fig. 14. Schematic diagram of the samples for LIDT measurement.

Laser damage on the samples was induced by varying the energy from 1 to 100 rrd from a

1064 nm Nd:YAG laser with a pulse duration of 20 ns. Silicon, diamond film on silicon

and diamond film windows were used as samples. The diameter of the laser spot at the

impact point was measured using an array detector. The laser damage threshold was

measured using the setup shown schematically in Fig. 15. The sample was mounted on an

X-Y-Z microposition stage. A He-Ne laser was used as a probe to measure the reflectance

of the surface.The reflection from an undamaged portion of the surface was detected and

fed to the lock-in amplifier along with the reference signal to obtain a null point. The probe

was then positioned on the damaged spot and the intensity of the reflected beam was

measured. A deviation from the null condition occurred when the reflected intensity

changed, due to absorption and scattering from the damaged spot. The deviation was

measured as a function of laser damage energy. The damage on the films was also
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confirmed by using a low power optical microscope. The experimental set-up could be

easily modified to detect the scattered light by blocking the specular reflection.

Beam

Splitter
M

:- ID--

Detectors

Chopper

Sample

XYZ Stage [

I

I Lock-in Amplifier

Fig. 15. Schematic diagram of the differential reflectometer used in the damage threshold

measurements.

In Fig. 16a and b we show the results of laser damage on silicon substrate, diamond

film on silicon and diamond film windows for 532 and 1064 nm laser radiation

respectively. The output signal from the lock-in amplifier is plotted against the laser

energy. The damage threshold of silicon was measured to be 5.3 J/era 2 (265 MW/cm 2) for

1064 nm and 2.1 J/era 2 (105 MW/em2) for 532 nm laser pulses. These are within the

range of values reported for silicon. 22 The irradiated spots were also examined using a

low power optical microscope for laser induced damage and the threshold energy agreed

with that determined by the reflectance technique. The absorption coefficients of silicon at

these wavelengths are high and energy transfer by resonant surface plasmons has been

considered as a damage mechanism. 23 The measured damage thresholds for a silicon

substrate coated with a 1.87 tam diamond film are 3.65 J/era 2 (182 MW/cm2) at 532 nm
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and 14.4 J/cm 2 (720 MW/cm 2) at 1064 nm. The reflectance of silicon substrate is about

30% and the 1.87 0ra diamond film corresponds to approximately an equivalent optical

thickness of quarter wavelength at 532 nm. For this film-substrate combination, the

reflectance is reduced to approximately 8%. Assuming the laser damage threshold of

diamond to be higher than silicon, it is reasonable to expect a threshold of 1.6 J/cm 2 for

this film-substrate combination, if the damage occurs mainly at the substrate. The

measured damage threshold at 532 nm is higher than that of the substrate, showing the

effectiveness of a diamond film for laser hardening. In the case of 1064 nm laser radiation,

the same diamond film has an optical thickness of non-quarter wavelength; hence the

reflectance of the fiim-substrate combination is between 8 and 30%. Moreover, for a non-

quarter wavelength film the maximum electric field due to the laser radiation will be within

the film rather than at the interface. Such a design has been shown to be beneficial in
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achieving a high damage threshold for optical coatings. 24 The high damage threshold of

14.4 J/cm 2 at 1064 nm obtained for the film-substrate combination is an indication that

diamond film will be useful for a variety of optical coating applications involving high

power lasers.

For a diamond film thickness of 1.87 I.tm, the laser damage thresholds at 532 and 1064

nm were found to be 6.0 J/era 2 (300 MW/cm 2) and 12.4 J/era 2 (620 MW/cm 2)

respectively. These values are substantially higher than those measured for the silicon

substrate. Thus, the low damage threshold of the film-substrate combination discussed

above for 532 nm is not duc to the diamond film. However, the damage threshold

measured for free-standing diamond film is lower than theoretically predicted value. Since

the films have high absorption coefficient due to sp 2 bonded carbon the contribution from

these impurities will be substantial in determining the damage threshold. However, the

damage threshold may be further improved by optimizing deposition conditions.
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Fig. 17 Micrographs of laser damage on

(a) Si substrate, (b) diamond film on Si, and (c) diamond film window.
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In Fig. 17 we show the SEM photographs of laser damage on various samples. There

is an obvious difference in the nature of damage on silicon substrate and on film-substrate

combination. Surface melting is visible on silicon whereas the damage on the latter appears

to be due to dielectric breakdown. The diamond films developed cracks during laser

damage suggesting that the film stress may influence the damage threshold.

$. FURTHER RESEARCH

$.1 High Density Nucleation

A high density of nucleation will be required to produce a continuous film. The

adhesion of such a film on the substrate will be superior to that of films coalesced by

growth on crystallites. More work on the surface preparation of the substrate is necessary

to arrive at the optimum condition for high density nucleation.

.....

S.2 Low Temperature Growth

The properties of the substrates may be adversely affected by the high temperature of

diamond film growth. This may be true for the optical surfaces as well. In presence of

oxygen, the growth temperature can be reduced as low as 450 °C. Addition of oxygen

also improves the quality of the diamond films by etching away the graphitic carbon

produced during growth. Hence diamond growth studies at a low temperature and in

presence of oxygen will be useful.

m
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